0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 GroundTermsRemoverProof (⇔)
↳6 ITRS
↳7 ITRStoIDPProof (⇔)
↳8 IDP
↳9 UsableRulesProof (⇔)
↳10 IDP
↳11 IDPNonInfProof (⇐)
↳12 AND
↳13 IDP
↳14 IDependencyGraphProof (⇔)
↳15 IDP
↳16 IDPNonInfProof (⇐)
↳17 IDP
↳18 IDependencyGraphProof (⇔)
↳19 TRUE
↳20 IDP
↳21 IDPNonInfProof (⇐)
↳22 IDP
↳23 IDependencyGraphProof (⇔)
↳24 TRUE
No human-readable program information known.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Cond_Load645(x1, x2, x3, x4, x5) → Cond_Load645(x1, x2, x4, x5)
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i66[0] →* i66[1])∧(i82[0] > 0 && i78[0] + 1 > 0 →* TRUE)∧(i78[0] →* i78[1])∧(i82[0] →* i82[1]))
(1) -> (0), if ((i78[1] + 1 →* i78[0])∧(i66[1] →* i66[0])∧(i82[1] →* 0)∧(i82[1] →* i82[0]))
(1) -> (2), if ((i66[1] →* i85[2])∧(i82[1] →* i83[2])∧(i82[1] →* i82[2])∧(i78[1] + 1 →* i78[2]))
(2) -> (3), if ((i85[2] →* i85[3])∧(i78[2] →* i78[3])∧(i83[2] > 0 && i85[2] > 0 && i82[2] > 0 →* TRUE)∧(i82[2] →* i82[3])∧(i83[2] →* i83[3]))
(3) -> (0), if ((i83[3] + -1 →* 0)∧(i82[3] →* i82[0])∧(i85[3] + -1 →* i66[0])∧(i78[3] →* i78[0]))
(3) -> (2), if ((i78[3] →* i78[2])∧(i83[3] + -1 →* i83[2])∧(i85[3] + -1 →* i85[2])∧(i82[3] →* i82[2]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i66[0] →* i66[1])∧(i82[0] > 0 && i78[0] + 1 > 0 →* TRUE)∧(i78[0] →* i78[1])∧(i82[0] →* i82[1]))
(1) -> (0), if ((i78[1] + 1 →* i78[0])∧(i66[1] →* i66[0])∧(i82[1] →* 0)∧(i82[1] →* i82[0]))
(1) -> (2), if ((i66[1] →* i85[2])∧(i82[1] →* i83[2])∧(i82[1] →* i82[2])∧(i78[1] + 1 →* i78[2]))
(2) -> (3), if ((i85[2] →* i85[3])∧(i78[2] →* i78[3])∧(i83[2] > 0 && i85[2] > 0 && i82[2] > 0 →* TRUE)∧(i82[2] →* i82[3])∧(i83[2] →* i83[3]))
(3) -> (0), if ((i83[3] + -1 →* 0)∧(i82[3] →* i82[0])∧(i85[3] + -1 →* i66[0])∧(i78[3] →* i78[0]))
(3) -> (2), if ((i78[3] →* i78[2])∧(i83[3] + -1 →* i83[2])∧(i85[3] + -1 →* i85[2])∧(i82[3] →* i82[2]))
(1) (i66[0]=i66[1]∧&&(>(i82[0], 0), >(+(i78[0], 1), 0))=TRUE∧i78[0]=i78[1]∧i82[0]=i82[1] ⇒ LOAD645(i66[0], 0, i82[0], i78[0])≥NonInfC∧LOAD645(i66[0], 0, i82[0], i78[0])≥COND_LOAD645(&&(>(i82[0], 0), >(+(i78[0], 1), 0)), i66[0], i82[0], i78[0])∧(UIncreasing(COND_LOAD645(&&(>(i82[0], 0), >(+(i78[0], 1), 0)), i66[0], i82[0], i78[0])), ≥))
(2) (>(i82[0], 0)=TRUE∧>(+(i78[0], 1), 0)=TRUE ⇒ LOAD645(i66[0], 0, i82[0], i78[0])≥NonInfC∧LOAD645(i66[0], 0, i82[0], i78[0])≥COND_LOAD645(&&(>(i82[0], 0), >(+(i78[0], 1), 0)), i66[0], i82[0], i78[0])∧(UIncreasing(COND_LOAD645(&&(>(i82[0], 0), >(+(i78[0], 1), 0)), i66[0], i82[0], i78[0])), ≥))
(3) (i82[0] + [-1] ≥ 0∧i78[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD645(&&(>(i82[0], 0), >(+(i78[0], 1), 0)), i66[0], i82[0], i78[0])), ≥)∧[(-1)Bound*bni_21] + [bni_21]i66[0] ≥ 0∧[(-1)bso_22] ≥ 0)
(4) (i82[0] + [-1] ≥ 0∧i78[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD645(&&(>(i82[0], 0), >(+(i78[0], 1), 0)), i66[0], i82[0], i78[0])), ≥)∧[(-1)Bound*bni_21] + [bni_21]i66[0] ≥ 0∧[(-1)bso_22] ≥ 0)
(5) (i82[0] + [-1] ≥ 0∧i78[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD645(&&(>(i82[0], 0), >(+(i78[0], 1), 0)), i66[0], i82[0], i78[0])), ≥)∧[(-1)Bound*bni_21] + [bni_21]i66[0] ≥ 0∧[(-1)bso_22] ≥ 0)
(6) (i82[0] + [-1] ≥ 0∧i78[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD645(&&(>(i82[0], 0), >(+(i78[0], 1), 0)), i66[0], i82[0], i78[0])), ≥)∧[bni_21] = 0∧[(-1)Bound*bni_21] ≥ 0∧0 = 0∧[(-1)bso_22] ≥ 0)
(7) (i82[0] ≥ 0∧i78[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD645(&&(>(i82[0], 0), >(+(i78[0], 1), 0)), i66[0], i82[0], i78[0])), ≥)∧[bni_21] = 0∧[(-1)Bound*bni_21] ≥ 0∧0 = 0∧[(-1)bso_22] ≥ 0)
(8) (i66[0]=i66[1]∧&&(>(i82[0], 0), >(+(i78[0], 1), 0))=TRUE∧i78[0]=i78[1]∧i82[0]=i82[1]∧+(i78[1], 1)=i78[0]1∧i66[1]=i66[0]1∧i82[1]=0∧i82[1]=i82[0]1 ⇒ COND_LOAD645(TRUE, i66[1], i82[1], i78[1])≥NonInfC∧COND_LOAD645(TRUE, i66[1], i82[1], i78[1])≥LOAD645(i66[1], i82[1], i82[1], +(i78[1], 1))∧(UIncreasing(LOAD645(i66[1], i82[1], i82[1], +(i78[1], 1))), ≥))
(9) (i66[0]=i66[1]∧&&(>(i82[0], 0), >(+(i78[0], 1), 0))=TRUE∧i78[0]=i78[1]∧i82[0]=i82[1]∧i66[1]=i85[2]∧i82[1]=i83[2]∧i82[1]=i82[2]∧+(i78[1], 1)=i78[2] ⇒ COND_LOAD645(TRUE, i66[1], i82[1], i78[1])≥NonInfC∧COND_LOAD645(TRUE, i66[1], i82[1], i78[1])≥LOAD645(i66[1], i82[1], i82[1], +(i78[1], 1))∧(UIncreasing(LOAD645(i66[1], i82[1], i82[1], +(i78[1], 1))), ≥))
(10) (>(i82[0], 0)=TRUE∧>(+(i78[0], 1), 0)=TRUE ⇒ COND_LOAD645(TRUE, i66[0], i82[0], i78[0])≥NonInfC∧COND_LOAD645(TRUE, i66[0], i82[0], i78[0])≥LOAD645(i66[0], i82[0], i82[0], +(i78[0], 1))∧(UIncreasing(LOAD645(i66[1], i82[1], i82[1], +(i78[1], 1))), ≥))
(11) (i82[0] + [-1] ≥ 0∧i78[0] ≥ 0 ⇒ (UIncreasing(LOAD645(i66[1], i82[1], i82[1], +(i78[1], 1))), ≥)∧[(-1)Bound*bni_23] + [bni_23]i66[0] ≥ 0∧[(-1)bso_24] ≥ 0)
(12) (i82[0] + [-1] ≥ 0∧i78[0] ≥ 0 ⇒ (UIncreasing(LOAD645(i66[1], i82[1], i82[1], +(i78[1], 1))), ≥)∧[(-1)Bound*bni_23] + [bni_23]i66[0] ≥ 0∧[(-1)bso_24] ≥ 0)
(13) (i82[0] + [-1] ≥ 0∧i78[0] ≥ 0 ⇒ (UIncreasing(LOAD645(i66[1], i82[1], i82[1], +(i78[1], 1))), ≥)∧[(-1)Bound*bni_23] + [bni_23]i66[0] ≥ 0∧[(-1)bso_24] ≥ 0)
(14) (i82[0] + [-1] ≥ 0∧i78[0] ≥ 0 ⇒ (UIncreasing(LOAD645(i66[1], i82[1], i82[1], +(i78[1], 1))), ≥)∧[bni_23] = 0∧[(-1)Bound*bni_23] ≥ 0∧0 = 0∧[(-1)bso_24] ≥ 0)
(15) (i82[0] ≥ 0∧i78[0] ≥ 0 ⇒ (UIncreasing(LOAD645(i66[1], i82[1], i82[1], +(i78[1], 1))), ≥)∧[bni_23] = 0∧[(-1)Bound*bni_23] ≥ 0∧0 = 0∧[(-1)bso_24] ≥ 0)
(16) (i85[2]=i85[3]∧i78[2]=i78[3]∧&&(&&(>(i83[2], 0), >(i85[2], 0)), >(i82[2], 0))=TRUE∧i82[2]=i82[3]∧i83[2]=i83[3] ⇒ LOAD645(i85[2], i83[2], i82[2], i78[2])≥NonInfC∧LOAD645(i85[2], i83[2], i82[2], i78[2])≥COND_LOAD6451(&&(&&(>(i83[2], 0), >(i85[2], 0)), >(i82[2], 0)), i85[2], i83[2], i82[2], i78[2])∧(UIncreasing(COND_LOAD6451(&&(&&(>(i83[2], 0), >(i85[2], 0)), >(i82[2], 0)), i85[2], i83[2], i82[2], i78[2])), ≥))
(17) (>(i82[2], 0)=TRUE∧>(i83[2], 0)=TRUE∧>(i85[2], 0)=TRUE ⇒ LOAD645(i85[2], i83[2], i82[2], i78[2])≥NonInfC∧LOAD645(i85[2], i83[2], i82[2], i78[2])≥COND_LOAD6451(&&(&&(>(i83[2], 0), >(i85[2], 0)), >(i82[2], 0)), i85[2], i83[2], i82[2], i78[2])∧(UIncreasing(COND_LOAD6451(&&(&&(>(i83[2], 0), >(i85[2], 0)), >(i82[2], 0)), i85[2], i83[2], i82[2], i78[2])), ≥))
(18) (i82[2] + [-1] ≥ 0∧i83[2] + [-1] ≥ 0∧i85[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD6451(&&(&&(>(i83[2], 0), >(i85[2], 0)), >(i82[2], 0)), i85[2], i83[2], i82[2], i78[2])), ≥)∧[(-1)Bound*bni_25] + [bni_25]i85[2] ≥ 0∧[1 + (-1)bso_26] ≥ 0)
(19) (i82[2] + [-1] ≥ 0∧i83[2] + [-1] ≥ 0∧i85[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD6451(&&(&&(>(i83[2], 0), >(i85[2], 0)), >(i82[2], 0)), i85[2], i83[2], i82[2], i78[2])), ≥)∧[(-1)Bound*bni_25] + [bni_25]i85[2] ≥ 0∧[1 + (-1)bso_26] ≥ 0)
(20) (i82[2] + [-1] ≥ 0∧i83[2] + [-1] ≥ 0∧i85[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD6451(&&(&&(>(i83[2], 0), >(i85[2], 0)), >(i82[2], 0)), i85[2], i83[2], i82[2], i78[2])), ≥)∧[(-1)Bound*bni_25] + [bni_25]i85[2] ≥ 0∧[1 + (-1)bso_26] ≥ 0)
(21) (i82[2] + [-1] ≥ 0∧i83[2] + [-1] ≥ 0∧i85[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD6451(&&(&&(>(i83[2], 0), >(i85[2], 0)), >(i82[2], 0)), i85[2], i83[2], i82[2], i78[2])), ≥)∧0 = 0∧[(-1)Bound*bni_25] + [bni_25]i85[2] ≥ 0∧0 = 0∧[1 + (-1)bso_26] ≥ 0)
(22) (i82[2] ≥ 0∧i83[2] + [-1] ≥ 0∧i85[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD6451(&&(&&(>(i83[2], 0), >(i85[2], 0)), >(i82[2], 0)), i85[2], i83[2], i82[2], i78[2])), ≥)∧0 = 0∧[(-1)Bound*bni_25] + [bni_25]i85[2] ≥ 0∧0 = 0∧[1 + (-1)bso_26] ≥ 0)
(23) (i82[2] ≥ 0∧i83[2] ≥ 0∧i85[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD6451(&&(&&(>(i83[2], 0), >(i85[2], 0)), >(i82[2], 0)), i85[2], i83[2], i82[2], i78[2])), ≥)∧0 = 0∧[(-1)Bound*bni_25] + [bni_25]i85[2] ≥ 0∧0 = 0∧[1 + (-1)bso_26] ≥ 0)
(24) (i82[2] ≥ 0∧i83[2] ≥ 0∧i85[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD6451(&&(&&(>(i83[2], 0), >(i85[2], 0)), >(i82[2], 0)), i85[2], i83[2], i82[2], i78[2])), ≥)∧0 = 0∧[(-1)Bound*bni_25 + bni_25] + [bni_25]i85[2] ≥ 0∧0 = 0∧[1 + (-1)bso_26] ≥ 0)
(25) (i85[2]=i85[3]∧i78[2]=i78[3]∧&&(&&(>(i83[2], 0), >(i85[2], 0)), >(i82[2], 0))=TRUE∧i82[2]=i82[3]∧i83[2]=i83[3]∧+(i83[3], -1)=0∧i82[3]=i82[0]∧+(i85[3], -1)=i66[0]∧i78[3]=i78[0] ⇒ COND_LOAD6451(TRUE, i85[3], i83[3], i82[3], i78[3])≥NonInfC∧COND_LOAD6451(TRUE, i85[3], i83[3], i82[3], i78[3])≥LOAD645(+(i85[3], -1), +(i83[3], -1), i82[3], i78[3])∧(UIncreasing(LOAD645(+(i85[3], -1), +(i83[3], -1), i82[3], i78[3])), ≥))
(26) (+(i83[2], -1)=0∧>(i82[2], 0)=TRUE∧>(i83[2], 0)=TRUE∧>(i85[2], 0)=TRUE ⇒ COND_LOAD6451(TRUE, i85[2], i83[2], i82[2], i78[2])≥NonInfC∧COND_LOAD6451(TRUE, i85[2], i83[2], i82[2], i78[2])≥LOAD645(+(i85[2], -1), +(i83[2], -1), i82[2], i78[2])∧(UIncreasing(LOAD645(+(i85[3], -1), +(i83[3], -1), i82[3], i78[3])), ≥))
(27) (i83[2] + [-1] ≥ 0∧i82[2] + [-1] ≥ 0∧i83[2] + [-1] ≥ 0∧i85[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD645(+(i85[3], -1), +(i83[3], -1), i82[3], i78[3])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [bni_27]i85[2] ≥ 0∧[(-1)bso_28] ≥ 0)
(28) (i83[2] + [-1] ≥ 0∧i82[2] + [-1] ≥ 0∧i83[2] + [-1] ≥ 0∧i85[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD645(+(i85[3], -1), +(i83[3], -1), i82[3], i78[3])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [bni_27]i85[2] ≥ 0∧[(-1)bso_28] ≥ 0)
(29) (i83[2] + [-1] ≥ 0∧i82[2] + [-1] ≥ 0∧i83[2] + [-1] ≥ 0∧i85[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD645(+(i85[3], -1), +(i83[3], -1), i82[3], i78[3])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [bni_27]i85[2] ≥ 0∧[(-1)bso_28] ≥ 0)
(30) (i83[2] + [-1] ≥ 0∧i82[2] + [-1] ≥ 0∧i83[2] + [-1] ≥ 0∧i85[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD645(+(i85[3], -1), +(i83[3], -1), i82[3], i78[3])), ≥)∧0 = 0∧[(-1)bni_27 + (-1)Bound*bni_27] + [bni_27]i85[2] ≥ 0∧0 = 0∧[(-1)bso_28] ≥ 0)
(31) (i83[2] ≥ 0∧i82[2] + [-1] ≥ 0∧i83[2] ≥ 0∧i85[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD645(+(i85[3], -1), +(i83[3], -1), i82[3], i78[3])), ≥)∧0 = 0∧[(-1)bni_27 + (-1)Bound*bni_27] + [bni_27]i85[2] ≥ 0∧0 = 0∧[(-1)bso_28] ≥ 0)
(32) (i83[2] ≥ 0∧i82[2] ≥ 0∧i83[2] ≥ 0∧i85[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD645(+(i85[3], -1), +(i83[3], -1), i82[3], i78[3])), ≥)∧0 = 0∧[(-1)bni_27 + (-1)Bound*bni_27] + [bni_27]i85[2] ≥ 0∧0 = 0∧[(-1)bso_28] ≥ 0)
(33) (i83[2] ≥ 0∧i82[2] ≥ 0∧i83[2] ≥ 0∧i85[2] ≥ 0 ⇒ (UIncreasing(LOAD645(+(i85[3], -1), +(i83[3], -1), i82[3], i78[3])), ≥)∧0 = 0∧[(-1)Bound*bni_27] + [bni_27]i85[2] ≥ 0∧0 = 0∧[(-1)bso_28] ≥ 0)
(34) (i85[2]=i85[3]∧i78[2]=i78[3]∧&&(&&(>(i83[2], 0), >(i85[2], 0)), >(i82[2], 0))=TRUE∧i82[2]=i82[3]∧i83[2]=i83[3]∧i78[3]=i78[2]1∧+(i83[3], -1)=i83[2]1∧+(i85[3], -1)=i85[2]1∧i82[3]=i82[2]1 ⇒ COND_LOAD6451(TRUE, i85[3], i83[3], i82[3], i78[3])≥NonInfC∧COND_LOAD6451(TRUE, i85[3], i83[3], i82[3], i78[3])≥LOAD645(+(i85[3], -1), +(i83[3], -1), i82[3], i78[3])∧(UIncreasing(LOAD645(+(i85[3], -1), +(i83[3], -1), i82[3], i78[3])), ≥))
(35) (>(i82[2], 0)=TRUE∧>(i83[2], 0)=TRUE∧>(i85[2], 0)=TRUE ⇒ COND_LOAD6451(TRUE, i85[2], i83[2], i82[2], i78[2])≥NonInfC∧COND_LOAD6451(TRUE, i85[2], i83[2], i82[2], i78[2])≥LOAD645(+(i85[2], -1), +(i83[2], -1), i82[2], i78[2])∧(UIncreasing(LOAD645(+(i85[3], -1), +(i83[3], -1), i82[3], i78[3])), ≥))
(36) (i82[2] + [-1] ≥ 0∧i83[2] + [-1] ≥ 0∧i85[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD645(+(i85[3], -1), +(i83[3], -1), i82[3], i78[3])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [bni_27]i85[2] ≥ 0∧[(-1)bso_28] ≥ 0)
(37) (i82[2] + [-1] ≥ 0∧i83[2] + [-1] ≥ 0∧i85[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD645(+(i85[3], -1), +(i83[3], -1), i82[3], i78[3])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [bni_27]i85[2] ≥ 0∧[(-1)bso_28] ≥ 0)
(38) (i82[2] + [-1] ≥ 0∧i83[2] + [-1] ≥ 0∧i85[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD645(+(i85[3], -1), +(i83[3], -1), i82[3], i78[3])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [bni_27]i85[2] ≥ 0∧[(-1)bso_28] ≥ 0)
(39) (i82[2] + [-1] ≥ 0∧i83[2] + [-1] ≥ 0∧i85[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD645(+(i85[3], -1), +(i83[3], -1), i82[3], i78[3])), ≥)∧0 = 0∧[(-1)bni_27 + (-1)Bound*bni_27] + [bni_27]i85[2] ≥ 0∧0 = 0∧[(-1)bso_28] ≥ 0)
(40) (i82[2] ≥ 0∧i83[2] + [-1] ≥ 0∧i85[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD645(+(i85[3], -1), +(i83[3], -1), i82[3], i78[3])), ≥)∧0 = 0∧[(-1)bni_27 + (-1)Bound*bni_27] + [bni_27]i85[2] ≥ 0∧0 = 0∧[(-1)bso_28] ≥ 0)
(41) (i82[2] ≥ 0∧i83[2] ≥ 0∧i85[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD645(+(i85[3], -1), +(i83[3], -1), i82[3], i78[3])), ≥)∧0 = 0∧[(-1)bni_27 + (-1)Bound*bni_27] + [bni_27]i85[2] ≥ 0∧0 = 0∧[(-1)bso_28] ≥ 0)
(42) (i82[2] ≥ 0∧i83[2] ≥ 0∧i85[2] ≥ 0 ⇒ (UIncreasing(LOAD645(+(i85[3], -1), +(i83[3], -1), i82[3], i78[3])), ≥)∧0 = 0∧[(-1)Bound*bni_27] + [bni_27]i85[2] ≥ 0∧0 = 0∧[(-1)bso_28] ≥ 0)
POL(TRUE) = [1]
POL(FALSE) = [1]
POL(LOAD645(x1, x2, x3, x4)) = x1
POL(0) = 0
POL(COND_LOAD645(x1, x2, x3, x4)) = [1] + x2 + [-1]x1
POL(&&(x1, x2)) = [1]
POL(>(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
POL(COND_LOAD6451(x1, x2, x3, x4, x5)) = [-1] + x2
POL(-1) = [-1]
LOAD645(i85[2], i83[2], i82[2], i78[2]) → COND_LOAD6451(&&(&&(>(i83[2], 0), >(i85[2], 0)), >(i82[2], 0)), i85[2], i83[2], i82[2], i78[2])
LOAD645(i85[2], i83[2], i82[2], i78[2]) → COND_LOAD6451(&&(&&(>(i83[2], 0), >(i85[2], 0)), >(i82[2], 0)), i85[2], i83[2], i82[2], i78[2])
COND_LOAD6451(TRUE, i85[3], i83[3], i82[3], i78[3]) → LOAD645(+(i85[3], -1), +(i83[3], -1), i82[3], i78[3])
LOAD645(i66[0], 0, i82[0], i78[0]) → COND_LOAD645(&&(>(i82[0], 0), >(+(i78[0], 1), 0)), i66[0], i82[0], i78[0])
COND_LOAD645(TRUE, i66[1], i82[1], i78[1]) → LOAD645(i66[1], i82[1], i82[1], +(i78[1], 1))
COND_LOAD6451(TRUE, i85[3], i83[3], i82[3], i78[3]) → LOAD645(+(i85[3], -1), +(i83[3], -1), i82[3], i78[3])
&&(TRUE, TRUE)1 ↔ TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(FALSE, FALSE)1 ↔ FALSE1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(1) -> (0), if ((i78[1] + 1 →* i78[0])∧(i66[1] →* i66[0])∧(i82[1] →* 0)∧(i82[1] →* i82[0]))
(3) -> (0), if ((i83[3] + -1 →* 0)∧(i82[3] →* i82[0])∧(i85[3] + -1 →* i66[0])∧(i78[3] →* i78[0]))
(0) -> (1), if ((i66[0] →* i66[1])∧(i82[0] > 0 && i78[0] + 1 > 0 →* TRUE)∧(i78[0] →* i78[1])∧(i82[0] →* i82[1]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(1) -> (0), if ((i78[1] + 1 →* i78[0])∧(i66[1] →* i66[0])∧(i82[1] →* 0)∧(i82[1] →* i82[0]))
(0) -> (1), if ((i66[0] →* i66[1])∧(i82[0] > 0 && i78[0] + 1 > 0 →* TRUE)∧(i78[0] →* i78[1])∧(i82[0] →* i82[1]))
(1) (i66[0]=i66[1]∧&&(>(i82[0], 0), >(+(i78[0], 1), 0))=TRUE∧i78[0]=i78[1]∧i82[0]=i82[1]∧+(i78[1], 1)=i78[0]1∧i66[1]=i66[0]1∧i82[1]=0∧i82[1]=i82[0]1 ⇒ COND_LOAD645(TRUE, i66[1], i82[1], i78[1])≥NonInfC∧COND_LOAD645(TRUE, i66[1], i82[1], i78[1])≥LOAD645(i66[1], i82[1], i82[1], +(i78[1], 1))∧(UIncreasing(LOAD645(i66[1], i82[1], i82[1], +(i78[1], 1))), ≥))
(2) (i66[0]=i66[1]∧&&(>(i82[0], 0), >(+(i78[0], 1), 0))=TRUE∧i78[0]=i78[1]∧i82[0]=i82[1] ⇒ LOAD645(i66[0], 0, i82[0], i78[0])≥NonInfC∧LOAD645(i66[0], 0, i82[0], i78[0])≥COND_LOAD645(&&(>(i82[0], 0), >(+(i78[0], 1), 0)), i66[0], i82[0], i78[0])∧(UIncreasing(COND_LOAD645(&&(>(i82[0], 0), >(+(i78[0], 1), 0)), i66[0], i82[0], i78[0])), ≥))
(3) (&&(>(i82[0], 0), >(+(i78[0], 1), 0))=TRUE ⇒ LOAD645(i66[0], 0, i82[0], i78[0])≥NonInfC∧LOAD645(i66[0], 0, i82[0], i78[0])≥COND_LOAD645(&&(>(i82[0], 0), >(+(i78[0], 1), 0)), i66[0], i82[0], i78[0])∧(UIncreasing(COND_LOAD645(&&(>(i82[0], 0), >(+(i78[0], 1), 0)), i66[0], i82[0], i78[0])), ≥))
(4) (0 ≥ 0 ⇒ (UIncreasing(COND_LOAD645(&&(>(i82[0], 0), >(+(i78[0], 1), 0)), i66[0], i82[0], i78[0])), ≥)∧[(2)bni_11 + (-1)Bound*bni_11] + [(2)bni_11]i78[0] + [(2)bni_11]i82[0] + [(2)bni_11]i66[0] ≥ 0∧[2 + (-1)bso_12] + i78[0] + i82[0] + i66[0] ≥ 0)
(5) (0 ≥ 0 ⇒ (UIncreasing(COND_LOAD645(&&(>(i82[0], 0), >(+(i78[0], 1), 0)), i66[0], i82[0], i78[0])), ≥)∧[(2)bni_11 + (-1)Bound*bni_11] + [(2)bni_11]i78[0] + [(2)bni_11]i82[0] + [(2)bni_11]i66[0] ≥ 0∧[2 + (-1)bso_12] + i78[0] + i82[0] + i66[0] ≥ 0)
(6) (0 ≥ 0 ⇒ (UIncreasing(COND_LOAD645(&&(>(i82[0], 0), >(+(i78[0], 1), 0)), i66[0], i82[0], i78[0])), ≥)∧[(2)bni_11 + (-1)Bound*bni_11] + [(2)bni_11]i78[0] + [(2)bni_11]i82[0] + [(2)bni_11]i66[0] ≥ 0∧[2 + (-1)bso_12] + i78[0] + i82[0] + i66[0] ≥ 0)
(7) (0 ≥ 0 ⇒ (UIncreasing(COND_LOAD645(&&(>(i82[0], 0), >(+(i78[0], 1), 0)), i66[0], i82[0], i78[0])), ≥)∧[(2)bni_11] ≥ 0∧[(2)bni_11] ≥ 0∧[(2)bni_11] ≥ 0∧[(2)bni_11 + (-1)Bound*bni_11] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2 + (-1)bso_12] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_LOAD645(x1, x2, x3, x4)) = x4 + x3 + x2
POL(LOAD645(x1, x2, x3, x4)) = [2] + [2]x4 + [2]x3 + [2]x1
POL(+(x1, x2)) = 0
POL(1) = 0
POL(0) = 0
POL(&&(x1, x2)) = 0
POL(>(x1, x2)) = 0
COND_LOAD645(TRUE, i66[1], i82[1], i78[1]) → LOAD645(i66[1], i82[1], i82[1], +(i78[1], 1))
LOAD645(i66[0], 0, i82[0], i78[0]) → COND_LOAD645(&&(>(i82[0], 0), >(+(i78[0], 1), 0)), i66[0], i82[0], i78[0])
COND_LOAD645(TRUE, i66[1], i82[1], i78[1]) → LOAD645(i66[1], i82[1], i82[1], +(i78[1], 1))
LOAD645(i66[0], 0, i82[0], i78[0]) → COND_LOAD645(&&(>(i82[0], 0), >(+(i78[0], 1), 0)), i66[0], i82[0], i78[0])
&&(TRUE, TRUE)1 → TRUE1
&&(TRUE, FALSE)1 → FALSE1
&&(FALSE, TRUE)1 → FALSE1
&&(FALSE, FALSE)1 → FALSE1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(1) -> (0), if ((i78[1] + 1 →* i78[0])∧(i66[1] →* i66[0])∧(i82[1] →* 0)∧(i82[1] →* i82[0]))
(0) -> (1), if ((i66[0] →* i66[1])∧(i82[0] > 0 && i78[0] + 1 > 0 →* TRUE)∧(i78[0] →* i78[1])∧(i82[0] →* i82[1]))
(1) (i66[0]=i66[1]∧&&(>(i82[0], 0), >(+(i78[0], 1), 0))=TRUE∧i78[0]=i78[1]∧i82[0]=i82[1] ⇒ LOAD645(i66[0], 0, i82[0], i78[0])≥NonInfC∧LOAD645(i66[0], 0, i82[0], i78[0])≥COND_LOAD645(&&(>(i82[0], 0), >(+(i78[0], 1), 0)), i66[0], i82[0], i78[0])∧(UIncreasing(COND_LOAD645(&&(>(i82[0], 0), >(+(i78[0], 1), 0)), i66[0], i82[0], i78[0])), ≥))
(2) (&&(>(i82[0], 0), >(+(i78[0], 1), 0))=TRUE ⇒ LOAD645(i66[0], 0, i82[0], i78[0])≥NonInfC∧LOAD645(i66[0], 0, i82[0], i78[0])≥COND_LOAD645(&&(>(i82[0], 0), >(+(i78[0], 1), 0)), i66[0], i82[0], i78[0])∧(UIncreasing(COND_LOAD645(&&(>(i82[0], 0), >(+(i78[0], 1), 0)), i66[0], i82[0], i78[0])), ≥))
(3) (0 ≥ 0 ⇒ (UIncreasing(COND_LOAD645(&&(>(i82[0], 0), >(+(i78[0], 1), 0)), i66[0], i82[0], i78[0])), ≥)∧[(2)bni_11 + (-1)Bound*bni_11] + [(2)bni_11]i78[0] + [(2)bni_11]i82[0] + [(2)bni_11]i66[0] ≥ 0∧[2 + (-1)bso_12] + i78[0] + i82[0] + i66[0] ≥ 0)
(4) (0 ≥ 0 ⇒ (UIncreasing(COND_LOAD645(&&(>(i82[0], 0), >(+(i78[0], 1), 0)), i66[0], i82[0], i78[0])), ≥)∧[(2)bni_11 + (-1)Bound*bni_11] + [(2)bni_11]i78[0] + [(2)bni_11]i82[0] + [(2)bni_11]i66[0] ≥ 0∧[2 + (-1)bso_12] + i78[0] + i82[0] + i66[0] ≥ 0)
(5) (0 ≥ 0 ⇒ (UIncreasing(COND_LOAD645(&&(>(i82[0], 0), >(+(i78[0], 1), 0)), i66[0], i82[0], i78[0])), ≥)∧[(2)bni_11 + (-1)Bound*bni_11] + [(2)bni_11]i78[0] + [(2)bni_11]i82[0] + [(2)bni_11]i66[0] ≥ 0∧[2 + (-1)bso_12] + i78[0] + i82[0] + i66[0] ≥ 0)
(6) (0 ≥ 0 ⇒ (UIncreasing(COND_LOAD645(&&(>(i82[0], 0), >(+(i78[0], 1), 0)), i66[0], i82[0], i78[0])), ≥)∧[(2)bni_11] ≥ 0∧[(2)bni_11] ≥ 0∧[(2)bni_11] ≥ 0∧[(2)bni_11 + (-1)Bound*bni_11] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2 + (-1)bso_12] ≥ 0)
(7) (i66[0]=i66[1]∧&&(>(i82[0], 0), >(+(i78[0], 1), 0))=TRUE∧i78[0]=i78[1]∧i82[0]=i82[1]∧+(i78[1], 1)=i78[0]1∧i66[1]=i66[0]1∧i82[1]=0∧i82[1]=i82[0]1 ⇒ COND_LOAD645(TRUE, i66[1], i82[1], i78[1])≥NonInfC∧COND_LOAD645(TRUE, i66[1], i82[1], i78[1])≥LOAD645(i66[1], i82[1], i82[1], +(i78[1], 1))∧(UIncreasing(LOAD645(i66[1], i82[1], i82[1], +(i78[1], 1))), ≥))
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD645(x1, x2, x3, x4)) = [2] + [2]x4 + [2]x3 + [2]x1
POL(0) = 0
POL(COND_LOAD645(x1, x2, x3, x4)) = x4 + x3 + x2
POL(&&(x1, x2)) = 0
POL(>(x1, x2)) = 0
POL(+(x1, x2)) = 0
POL(1) = 0
LOAD645(i66[0], 0, i82[0], i78[0]) → COND_LOAD645(&&(>(i82[0], 0), >(+(i78[0], 1), 0)), i66[0], i82[0], i78[0])
COND_LOAD645(TRUE, i66[1], i82[1], i78[1]) → LOAD645(i66[1], i82[1], i82[1], +(i78[1], 1))
LOAD645(i66[0], 0, i82[0], i78[0]) → COND_LOAD645(&&(>(i82[0], 0), >(+(i78[0], 1), 0)), i66[0], i82[0], i78[0])
COND_LOAD645(TRUE, i66[1], i82[1], i78[1]) → LOAD645(i66[1], i82[1], i82[1], +(i78[1], 1))
&&(TRUE, TRUE)1 → TRUE1
&&(TRUE, FALSE)1 → FALSE1
&&(FALSE, TRUE)1 → FALSE1
&&(FALSE, FALSE)1 → FALSE1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |